
Controllers: Programming
Application Logic

 Controller, the name suggests its job—it controls, supervises, and manages. In
CakePHP, controllers are the classes that handle browser requests and facilitate
communication between models and views. It is the central hub where application
logics are defi ned to control program fl ows of browser requests.

 In CakePHP, every public method of a controller is called 'action'. Each action
represents a URL. When a URL is requested from browser, the respective controller
action is invoked. A controller generally uses a model class to manipulate and
process the user data. Once the data is processed, controller takes it from the model
and forwards it to the appropriate view fi le. The view fi le is then sent back as the
response and displayed in the user's browser. In such a way, controller coordinates
between the user, the model, and the views.

In this chapter, we will learn the nuts and bolts of CakePHP controller. We will
particularly fi nd out:

1. How to interact with model classes from controllers
2. How to pass controller data to the view
3. How to create a controller action and use action parameters
4. How to get form data from view
5. How to redirect to another action
6. How to add common functionalities to all controllers
7. How to create reusable components that can be used to add functionalities

to controllers

Controllers: Programming Application Logic

[50]

Interacting with Model
 Most commonly, one single controller manages the logic for one single model. In
chapter 3, we already saw how CakePHP automatically fi nds out that relevant
model's class name from a controller's name. The related model class is automatically
associated and can be accessed from the controller—we don't need to confi gure it
in the controller class explicitly. In the previous chapter, we also saw an example
of this automatic binding. We created a TasksController class and CakePHP
automatically found out and attached the related model Task (through its naming
convention) with the controller. We were able to access the Task model from the
TasksController as if that model class is a controller attribute ($this->Task).

Attaching Models and Controllers
In CakePHP, generally, every controller has one dependent model class. That's the
way Cake is designed to be used. CakePHP will always look for a related model class
for a controller through its naming convention unless a controller-model attachment
is explicitly defi ned in that controller. Now, in some unusual situations, we may
need a controller that does not have any dependency on any model class. In that
case, we have to confi gure our controller to handle this scenario. Let's see how such a
model-less controller can be created.

Time for Action: Controller without a Model
1. Put a fresh copy of CakePHP inside your web root folder. Rename the folder

to applogic.
2. Inside the /app/controllers/ directory, create a new PHP fi le

books_controller.php and write the following code inside it.
 <?php
 class BooksController extends AppController {

 var $name = 'Books';
 var $uses = array();

 function index() {
 //nothing's here
 }
 }
 ?>

3. Inside the /app/views/ directory, create a new folder books. Create a new
view fi le named index.ctp there (/app/views/books/index.ctp), with the
following code:

 <h2>Packt Book Store</h2>
 <p>Coming Soon!</p>

Chapter 4

[51]

4. Now, visit the following URL and see what shows up in the browser:
http://localhost/applogic/books/

What Just Happened?
At fi rst, we have created a new CakePHP project. We already know how to create
and confi gure a new Cake project from Chapter 2. In this case, as we don't need any
database, we did not set up the database confi guration fi le (/app/config/database.
php). Cake will not fi nd any database confi guration fi le but it will work.

 We then created a controller class named BooksController. Inside the controller, we
defi ned an attribute named $uses. The $uses attribute is a special controller attribute
that is used to explicitly defi ne the relevant model class name of a controller. If $uses
is not defi ned, Cake tries to fi nd out the relevant model name through its naming
convention. We assigned an empty array to this $uses attribute in BooksController.
It means that BooksController does not use any model class. We could also assign
$uses to null like the following, which would also do the same:

var $uses = array();

We then wrote an action named index() inside the BooksController. And, we also
created the corresponding view fi le (app/books/index.ctp) for this particular action.

The index() action contains no code. And hence, when this action will be requested,
Cake will just render its related view fi le.

When someone visits the URL http://localhost/applogic/books/, the default
action (that is index()) of the BooksController is invoked, and the related view fi le
is rendered. It displays something like the following in the browser:

Controllers: Programming Application Logic

[52]

I n CakePHP, we can associate models with controllers in 2 ways:

1. Automatic binding: C akePHP automatically binds a model with a controller
through its naming convention. Like a controller named BooksController
will be tied with a model named Book automatically (unless something else is
manually defi ned).

2. Manual binding: I f we want to override the automatic binding, we can
assign $uses controller attribute to an array of models. Those models will be
available to the controller.

'Convention over confi guration' is one of the principal philosophies
of CakePHP framework. It is recommended to follow the naming
conventions of controllers and models and let Cake attach related
controllers and models automatically. It would simplify things.

We have already seen how the second method (Manual binding) works. We
assigned an empty array to $uses attribute of BooksController to tell Cake that this
controller has no dependency on any model class. We could also manually attach
more than one model(s) to a controller using the $uses attribute. In that case, we just
have to put all the model names in the $uses attribute, like this:

$uses = array ('ModelName1', 'ModelName2') ;

We just learnt how controllers can be tied up with models. Now, we will see how
they can interact with the presentation fi les, a.k.a views.

Action, Parameters, and Views
I n CakePHP, actions are public methods of controllers that represent URLs. A
general Cake URL contains suffi xes like /controller_name/action_name and
from this pattern Cake automatically maps the URL with a controller's action.
Again, every such controller action can automatically call a view fi le that contains
the display logic for that particular action. The appropriate view fi le is determined
from the controller and action names. As an example, if the index() action of the
BooksController is requested, the view fi le in /app/views/books/index.ctp will
be rendered. We very often need to supply processed data to those view fi les from
controllers, so that we can present the data in a suitable format to the user.

Chapter 4

[53]

Interacting with View
CakePHP determines the appropriate view fi le for a controller's action by its naming
convention. Controller can also supply processed data to those view fi les. To do
that we can use the controller method set(). In chapter 3, we saw some uses of this
set() method. In this section, we will learn some more on how we can interact with
view fi les from controllers.

 Time for Action: Passing Variables to a View
1. Change the index() action of the BooksController (/app/controllers/

books_controller.php).
 <?php
 class BooksController extends AppController {

 var $name = 'Books';
 var $uses = array();

 function index() {
 $this->set('page_heading', 'Packt Book Store');

 $book = array (
 'book_title' => 'Object Oriented Programming
 with PHP5',
 'author' => 'Hasin Hayder',
 'isbn' => '1847192564',
 'release_date' => 'December 2007'
);
 $this->set($book);

 $this->pageTitle = 'Welcome to the Packt Book Store!';
 }
 }
 ?>

2. Change view fi le index.ctp (/app/views/books/index.ctp) with the
following code:

 <h2><?php echo $page_heading; ?></h2>
 <dl>
 <lh><?php echo $bookTitle; ?></lh>
 <dt>Author:</dt><dd><?php echo $author; ?></dd>
 <dt>ISBN:</dt><dd><?php echo $isbn; ?></dd>
 <dt>Release Date:</dt><dd><?php echo $releaseDate; ?></dd>
 </dl>

3. Now enter the following URL in your browser.
http://localhost/applogic/books/.

Controllers: Programming Application Logic

[54]

What Just Happened?
I n the index() action, we fi rst used the set() method to set a view variable named
page_heading.

$this->set('page_heading', 'Packt Book Store');

The fi rst parameter of set()specifi es the view variable's name and the second
parameter defi nes its value. In the view fi le, in the fi rst line, we simply printed out
the $page_heading variable that displays the text Packt Book Store (that was set
in the controller).

In the index() action, we then created an associative array named $book.

$book = array (
 'book_title' => 'Object Oriented Programming with
PHP5',
 'author' => 'Hasin Hayder',
 'isbn' => '1847192564',
 'release_date' => 'December 2007'
);

And then passed this array to the view fi les using the set() method like this:

$this->set($book);

As we can see, the set() method can take a single parameter as well. We can create
an associative array (as we created the $book array) and pass that array to the set()
method. It will automatically set all these key=>value pairs of the associative array
respectively, as view variables and their values. This method can be pretty handy if
we want to assign a set of variables to the view quickly. One thing to be noted, in this
case, all the underscored array keys will become CamelCased view variables. Like,
in our case, the book_title and release_date keys set in the controller became
$bookTitle and $releaseDate variables in the correspondent view. Inside the view
fi le, we then printed out all those variables set through the associative array $book.

Lastly, in the controller action, we defi ned a controller attribute named $pageTitle.

$this->pageTitle = 'Welcome to the Packt Book Store!';

Chapter 4

[55]

$pageTitle is a special attribute that sets the title of the rendered page. Now, if we
visit this page it would look something like the following:

Actions and Parameters
In chapter 3, we already learned how parameters can be passed to a controller
action by adding suffi xes to the URL. A typical Cake URL looks like this:
http://yourhost/controller/[/action][/parameters]. T he elements in the
URL that are appended to the hostname and separated by / are known as request
parameters. We will now see more closely how these request parameters are handled
by controller actions.

Time for Action: Understanding Actions and Parameters
1. Ch ange the index() action of the BooksController like the following:
 <?php
 class BooksController extends AppController {

 var $name = 'Books';
 var $uses = array();

 function index($id = 0) {

 $books = array (

 '0' => array (

 'book_title' => 'Object Oriented
 Programming with PHP5',

Controllers: Programming Application Logic

[56]

 'author' => 'Hasin Hayder',

 'isbn' => '1847192564',

 'release_date' => 'December 2007'

),

 '1' => array (

 'book_title' => 'Building Websites
 with Joomla! v1.0',

 'author' => 'Hagen Graf',

 'isbn' => '1904811949',

 'release_date' => 'March 2006'

)

);

 $id = intval($id);

 if($id < 0 || $id >= count($books)) {

 $id = 0;

 }

 $this->set($books[$id]);

 $this->set('page_heading', 'Book Store');

 $this->pageTitle = 'Welcome to the Packt Book Store!';

 }

 }
 ?>

2. Now visit the following links and see what shows up in the browser:
http://localhost/applogic/books/index/0

http://localhost/applogic/books/index/1

http://localhost/applogic/books/index/xyz

What Just Happened?
We fi rst recreated the BooksController's action index().The index() action can
take a parameter named $id:

function index($id = 0) {

That means, if someone requests the URL http://localhost/applogic/books/
index/1, the $id parameter of the index() action will be set to 1. The default value
of the parameter $id is 0. So, if no request parameter is provided through URL (like
http://localhost/applogic/books/index/), the parameter $id will have the
value 0.

Chapter 4

[57]

We also defi ned an array named $books inside the index() action. The $books array
has two elements containing information about two different books.

$books = array (
 '0' => array (
 'book_title' => 'Object Oriented
Programming with PHP5',
 'author' => 'Hasin Hayder',
 'isbn' => '1847192564',
 'release_date' => 'December 2007'
),
 '1' => array (
 'book_title' => 'Building Websites with
Joomla! v1.0',
 'author' => 'Hagen Graf',
 'isbn' => '1904811949',
 'release_date' => 'March 2006'
)
);

Now, we want to show the appropriate book information depending on the
request parameter. That is if 0 is supplied as the request parameter, we will show
information of the 0th book. We can get the request parameter's value through $id.
We just passed the $idth element of the $books array to the view fi le:

$this->set($books[$id]);

The view fi le (/app/views/books/index.ctp) that we created in the previous Time
for Action will work for this one too, without any change. Now, if someone visits the
URL http://localhost/applogic/books/index/0, the index() action will show
the information of the fi rst book. If 1 is supplied as parameter $id, the second book's
information will be displayed.

Controllers: Programming Application Logic

[58]

But what if the parameter supplied has got a value that is unacceptable parameter—
like a non integer, or an integer that is less than 0 or greater than 1 (the highest index
of the $books array). In those cases, our code would just throw errors. To handle
these exceptional cases, we added an if condition in the action. If any of those
exception happens, we made $id = 0, so that we can bypass the errors gracefully.

$ i d = intval($id);
if($id < 0 || $id >= count($books)) {
$id = 0;
}

Now if we go to the URL http://localhost/applogic/books/index/xyz, it
would just show the information of the fi rst book.

Following the same technique, we can have more than one parameter for a particular
action. In the next Time for Action, we will see an example of such a controller action.

Time for Action: Handling more than One Request
Parameter

1. Crea te a new controller MathsController with the following code:
 <?php
 class MathsController extends AppController {

 var $name = 'Maths';
 var $uses = array();

Chapter 4

[59]

 function add_digits($digit1 = 0, $digit2 = 0, $digit3 = 0) {

 $sum = intval($digit1) + intval($digit2) + intval($digit3);

 $this->set('sum', $sum);

 }

 }
 ?>

2. Create its corresponding view fi le add_digits.ctp (/app/views/maths/
add_digits.ctp) using the following code:

 <h2>The sum is equal to <?php echo $sum; ?></h2>

3. Now visit the following links and see what shows up in the browser:
 http://localhost/applogic/maths/add_digit/1/2/3

 http://localhost/applogic/books/index/1/2

What Just Happened?
We fi rst created a new controller named MathsController. Inside the controller, we
wrote an action called add_digits(). The add_digits() action takes 3 parameters.
Each having a default value 0. When this action is requested through URL, it would
sum up the digits and pass the result to its view fi le. We created a very simple view
fi le to display the sum supplied from the controller action. Now, if we visit the URL
http://localhost/applogic/maths/add_digits/1/2/3 it should display the sum
of the three numbers 1, 2 and 3, like the following:

Controllers: Programming Application Logic

[60]

How Cake Handles an Incoming Request?
Cake automatically routes to the appropriate controller and action. It also
loads the appropriate model class and displays the correct view fi le. If all the
conventions are followed correctly, it always does the right thing for us without
any extra confi guration. We will now skim through the whole process to have
a clearer understanding of how Cake handles incoming requests. Let's take the
BooksController example and assume a request has arrived in the URL
http://localhost/applogic/books/index/123. Now, let's see what Cake will
basically do with this request:

1. Cake accepts an incoming request from a browser. It determines the target
controller's name that should handle this particular request from the fi rst
request parameter. In this case, the target controller is the BooksController.

2. It instantiates an object of class BooksController found in the fi le
books_controller.php in the directory /app/controllers/.

3. It loads the related model class Books from the fi le books.php found in the
directory /app/models/. In our case, the target controller is 'confi gured'
to use no model and hence actually it does not load or look for any related
model class.

4. The next request parameter suggests the action to be invoked in the target
controller. If no second request parameter is provided, it routes to the
default action that is index(). In this case, there is a second parameter and it
suggests the target action is index().

5. Cake invokes that target action of the target controller, that is the index()
action of our BooksController. If some additional parameters are supplied
with the request, Cake passes them as parameters while calling the target
action. In our case, one additional request parameter is provided with value
123. So, 123 is passed to the index() method of BooksController
as parameter.

6. It locates the appropriate view fi le from the target controller and target
action's names that is the fi le index.ctp inside the directory /app/views/
books/. It passes view variables that were set in the controller action to that
fi le. It then renders that view fi le and the rendered view is sent to browser as
a response.

So, this is how an incoming request is generally handled by Cake. We can, though,
override the default behavior by confi guring our controllers, models or routes. We
will learn about them all through this book. So keep reading...

Chapter 4

[61]

Getting Post Data from the View
HTML forms are the most common way of taking user inputs in web applications.
In chapter 3, we already saw how to create simple HTML forms using CakePHP's
FormHelper. In this section, we will see how to access the submitted form data from
a controller action. Let's dive into it.. .

Time for Action: Getting Post Data from the View
1. Create a controller class UsersController using the following code and save

it as users_controller.php inside the /app/controllers/ directory.
 <?php
 class UsersController extends AppController {

 var $name = 'Users';
 var $uses = array();

 function index() {
 if (!empty($this->data)) {
 //data posted
 echo $this->data['name'];
 $this->autoRender = false;
 }
 }
 }
 ?>

2. Create a view fi le named index.ctp inside the /app/views/users/ with the
following code:

 <?php echo $form->create(null, array('action' => 'index'));?>
 <fieldset>
 <legend>Enter Your Name</legend>
 <?php echo $form->input('name'); ?>
 </fieldset>
 <?php echo $form->end('Go');?> .

3. Now visit the following links and see what shows up in the browser:
http://localhost/applogic/users/.

What Just Happened?
 Before going through the code, let's fi rst learn about a special controller attribute
$data. This attribute is used to store the POST data sent from HTML forms to the
controller. When some data is submitted from an HTML form, Cake automatically fi lls
up the attribute $data with the posted data. That's all we need to know. Now, we are
ready to step forward and check out what the above piece of code is actually doing.

Controllers: Programming Application Logic

[62]

In the fi rst line of the index() action, we checked if $this->data attribute is empty.
If $this->data is not empty, this means some data is submitted from an HTML
form. In that case, we will execute the codes inside the if{} block. Let's ignore
what's going on inside this block for now and check out what's going to happen if no
data is submitted. In that case, we will skip the if{} block and directly render the
corresponding view fi le (/apps/views/users/index.ctp).

 Inside the view, we created a simple form using CakePHP's built-in FormHelper.
We will learn more about the FormHelper in Chapter 7. For now, just understand
that we can defi ne the model name through the fi rst parameter of the FormHelper's
create() method. In our case, we defi ned it as null, which means the form fi elds do
not belong to any model. And in the second parameter, we specifi ed that the form is
to be submitted to the index() action of the current controller.

<?php echo $form->create(null, array('action' => 'index'));?>

 We then created a text input fi eld using the input() method of the FormHelper. As
we want to take user's name using this fi eld, we supplied name as a parameter to this
input() method.

<?php echo $form->input('name'); ?>

This input() method will generate an HTML input element like this:
<input type="text" id="Name" value="" name="data[name]"/>

At the end of this view fi le, we ended the form with a submit button called Go
created using the FormHelper's end() method. Now, if we visit the page
http://localhost/applogic/users/ it will display a form like the following:

Chapter 4

[63]

Now, if a name is entered in the input fi eld and the form is submitted, the controller
attribute $data will be fi lled up with the submitted POST data. The condition if
(!empty($this->data)) will return a true. And the codes inside the if{} block
will get executed. Inside the block, we directly printed out the value entered in the
input fi eld:

echo $this->data['name'];

Notice how we accessed the value entered in the input fi eld through the $data
attribute. The key name of the $data array simply returns the value entered in the
fi eld named name.

The next line sets the $autoRender attribute of the controller to false:

$this->autoRender = false;

I t tells the controller that it does not have to render any view. One important thing
to be noted: generally, it is not possible to print outputs from a controller action. To
do that we have to set the $autoRender attribute to false. It is not recommended to
generate output from controller either, but it sometimes helps for quick debugging.

Redirecting
I n dynamic web applications, redirects are often used to control the fl ow of the
application and move the user from one page to another. Without redirects, web
applications would be scattered pages without any real fl ow. In usual PHP-based
web applications, the PHP function header() is very commonly used to redirect the
user from one page to another. Whereas, CakePHP offers a built-in controller method
redirect() that is used to direct the user from one action to another. Now, without
further ado, let's see how to redirect in CakePHP!

Time for Action: Redirecting from One Action to Another
1. Modify the UsersController (/app/controllers/users_controller.php).
 class UsersController extends AppController {

 var $name = 'Users';
 var $uses = array();

 function index() {
 if (!empty($this->data)) {
 $this->redirect(array('controller'=>'users',
 'action'=>'welcome', urlencode($this->data['name'])));
 }
 }

 function welcome($name = null) {
 if(empty($name)) {

Controllers: Programming Application Logic

[64]

 $this->Session->setFlash('Please provide your name!',
 true);
 $this->redirect(array('controller'=>'users',
 'action'=>'index'));
 }
 $this->set('name', urldecode($name));
 }
 }

2. Create a view fi le named welcome.ctp inside the directory /app/views/
users/ with the following code:

 <h2>Welcome, <?php echo $name; ?></h2>

3. Now enter the following URL in your browser:
 http://localhost/applogic/users/

What Just Happened?
I n the index() action of the UsersController, we changed the code inside the if{}
block. Instead of printing out the name submitted from the form, we redirected the
user to another action using the following line of code:

$this->redirect(array('controller'=>'users', 'action'=>'welcome',
urlencode($this->data['name'])));

The redirect() method is pretty easy to use. The fi rst parameter is an associative
array. We specifi ed the controller and action name (where we want to redirect) there
through controller and action keys. Also, additional request parameters can be
supplied by appending new elements in this array. When the form is submitted, we
redirected the user to the UsersController's welcome() action. We also appended
the user's name in the URL as a request parameter. We got the name from the $data
controller attribute and used the PHP function urlencode() to make that input
URL-friendly.

redirect() by default exits just after the execution. So, codes after the
redirect() call do not execute, we can though set the third parameter
to true while calling the redirect() method to avoid the force exit.

Now, let's have a look at the welcome() action. This action takes an optional
parameter $name. Inside this action, we fi rst checked if any request parameter is
supplied. If no parameter is specifi ed, we set a fl ash message and then sent back the
user to the index() action of the UsersController using the redirect() method.

if(empty($name)) {
 $this->Session->setFlash('Please provide your name!');
 $this->redirect(array('action'=>'index'));
}

Chapter 4

[65]

See, this time while calling the redirect() method, we only set the action key
in the parameter. When the controller key is not set, the redirect() method
redirects to the current controller's action.

If the request parameter $name is provided, it will ignore the if{} block and pass the
URL-decoded name to the view as $name variable.

$this->set('name', urldecode($name));

In the view fi le, we simply welcomed the user by displaying a 'Welcome,' text before
the user's name.

Now, if we visit the URL http://localhost/applogic/users/ and enter a name
there, it should redirect us to the welcome action and show us a greeting message.

 AppController: The Parent Controller
F rom Object Oriented perspective, every CakePHP controller is a subclass of the
AppController class. Recall how we start the class defi nition of a controller—look at
the following line of code as an example:

class BooksController extends AppController {

Our controllers extend the AppController class—this means we set the
AppController class as the parent class of all of our controllers. As of now, it seems
alright. But the next question that quickly pops up in our mind is: where is that
AppController class located? Well, it can be found inside the app_controller.php
fi le under the /cake/libs/controller/ directory. This app_controller.php is
actually a placeholder fi le and can be overridden by our own one.

T he main benefi t of having our own AppController class is we can put in common
application-wide methods inside this class and all of our controllers will just inherit
them. We can use attributes and methods defi ned inside the AppController from
any of our controller class. We will now see how to create our own AppController
class and how we can make use of the methods written inside the AppController
from a controller class.

Time for Action: Adding Common Functionalities to all
Controllers

1. C reate a new fi le named app_controller.php just inside the /app/ folder
with the following code,

 <?php
 class AppController extends Controller {

 function strip_and_clean ($id, $array) {

Controllers: Programming Application Logic

[66]

 $id = intval($id);
 if($id < 0 || $id >= count($array)) {

 $id = 0;
 }

 return $id;
 }
 }
 ?>

2. Modify the BooksController's (/app/controllers/books_controller.
php) code, replace the if{} block with the controller method strip_and_
clean(),

 <?php
 class BooksController extends AppController {

 var $name = 'Books';
 var $uses = array();

 function index($id = 0) {
 $books = array (
 '0' => array (
 'book_title' => 'Object Oriented
 Programming with PHP5',
 'author' => 'Hasin Hayder',
 'isbn' => '1847192564',
 'release_date' => 'December 2007'
),
 '1' => array (
 'book_title' => 'Building Websites
 with Joomla! v1.0',
 'author' => 'Hagen Graf',
 'isbn' => '1904811949',
 'release_date' => 'March 2006'
)
);

 $id = $this->strip_and_clean($id, $books);

 $this->set($books[$id]);
 $this->set('page_header', 'Book Store');
 $this->pageTitle = 'Welcome to the Packt Book Store!';
 }
 }
 ?>

Chapter 4

[67]

 3. Now visit the following links and see what shows up in the browser:
http://localhost/applogic/books/index/0

http://localhost/applogic/books/index/1

http://localhost/applogic/books/index/xyz

What Just Happened?
We fi rst wrote a class named AppController and saved it as app_controller.php
inside the /app/ folder.

<?php
class AppController extends Controller {

Inside this class, we wrote a method named strip_and_clean(). This method takes
two parameters - $id and $array.

function strip_and_clean ($id, $array) {
 if(!is_int($id) || $id < 0 || $id >= count($array)) {
 $id = 0;
 }
 return $id;
}

The strip_and_clean() method simply returns $id, if $id is a non-negative integer
and $id is less than the length of $array. Otherwise it returns a 0.

Previously, we did this checking inside the BooksController. And now we have
moved this particular code to the AppController method strip_and_clean(). As
all of our controllers inherit the AppController class, we can now use this particular
routine from any of them.

I n BooksController, we replaced the if{} block with the strip_and_clean()
method.

$id = $this->strip_and_clean($id, $books);

$id and $books variables are passed to this method as parameters. And the returned
result of the method is then stored back to $id. Now, if the request parameter $id
is invalid, it will make it to 0. And the /books/index/ action will show us the
information about the fi rst book defi ned in $array.

The new approach is better only when we have some common application wide
methods. In those cases, we can just write them inside the AppController class and
call them from any of our controllers. But we also have to remember that writing
methods inside the AppController is not always the best way. There may be other
controllers that do not require those methods (like we have UsersController, which
does not need the strip_and_clean() method) but still will inherit them.

Controllers: Programming Application Logic

[68]

The better approach is to load codes on demand, load the methods only where
it is required. Moreover, writing methods inside the AppController does not
increase reusability outside the application—it just increases application-specifi c
and application-wide reusability. We just cannot reuse the methods written inside
the AppController for one application in any other application directly. If we want
to write reusable codes and follow the DRY (Don't Repeat Yourself) principle, it is
always better to write our methods in separate classes and load them only from the
controllers that require those methods.

CakePHP also provides a way for writing and using reusable classes. In CakePHP,
they are called components. In the next section, we will work with CakePHP
components and see how it can increase reusability.

Working with Components
C omponents are reusable classes that can be used from any controller in CakePHP
applications. By defi nition, components are only limited to be used from and inside
controllers and its other components. They are used to help controllers with a goal of
reusability—we can just port the component classes to any of our Cake applications
and use them in those applications. CakePHP ships with some useful components,
like AuthComponent, SessionCompoenent, etc. We will learn about them in
Chapter 10. Now, let's see how to create our own custom component and use them
from a controller.

Time for action: Creating and Using Reusable Components
1. C reate a component class UtilComponent using the following code and save it

in a fi le named util.php under /app/controllers/components/ directory.
 <?php
 class UtilComponent extends Object
 {
 function strip_and_clean ($id, $array) {

 $id = intval($id);

 if($id < 0 || $id >= count($array)) {

 $id = 0;

 }

 return $id;

 }

 }
 ?>

Chapter 4

[69]

2. Remove the strip_and_clean() method from the AppController
(/app/app_controller.php) class.

 <?php
 class AppController extends Controller {

 }
 ?>

3. Modify the BooksController class (/app/controllers/
books_controller.php),

 <?php
 class BooksController extends AppController {

 var $name = 'Books';
 var $uses = array();
 var $components = array('Util');

 function index($id = 0) {
 $books = array (
 '0' => array (
 'book_title' => 'Object Oriented
 Programming with PHP5',
 'author' => 'Hasin Hayder',
 'isbn' => '1847192564',
 'release_date' => 'December 2007'
),
 '1' => array (
 'book_title' => 'Building Websites
 with Joomla! v1.0',
 'author' => 'Hagen Graf',
 'isbn' => '1904811949',
 'release_date' => 'March 2006'
)
);

 $id = $this->Util->strip_and_clean($id);

 $this->set('book', $books[$id]);

 $this->pageTitle = 'Welcome to the Packt Book Store!';
 }
 }
 ?>

4. N ow visit the following links and see what shows up in the browser
http://localhost/applogic/books/index/0

http://localhost/applogic/books/index/1

http://localhost/applogic/books/index/xyz

Controllers: Programming Application Logic

[70]

What Just Happened?
At fi rst, we created a component class named UtilComponent and saved it in a
fi le named util.php under the /app/controllers/components/ folder. We then
moved (cut-pasted) the strip_and_clean() method from the AppController to the
UtilComponent.

The class name of a component should always have a Component
postfi x. Every component class fi le should be placed under the /app/
controllers/components/ directory. The fi lenames should be
named after the lowercased classname of the component (without the
Component postfi x).

N ow, to use this UtilComponent from our BooksController, we have to add
this component to the controller. It can be done through the controller attribute
$components. $components holds an array of all the component names that we want
to make available inside the controller. In our case, as we want to load only the Util
component, we defi ned the $components array like the following:

var $components = array('Util');

Notice, the component name used in the $components array is Util
(without the Component postfi x) not UtilComponent.

Once loaded, the UtilComponent class can be referred and used from the controller.
Now instead of using the strip_and_clean() method of the AppController, we
called the UtilComponent's method strip_and_clean().

$id = $this->Util->strip_and_clean($id);

Everything else in the controller remains unchanged. And it will work, as it was
working before. The only difference is, now we have a more reusable code that can
be used from any controller or any other application when needed.

Chapter 4

[71]

Summary
A controller is used to manage the application logic. It controls the application fl ow
and works as a bridge between the model and the view. CakePHP applications
use a common format for the URL. From the URL, Cake fi nds out the appropriate
controller action to invoke to handle a particular browser request. Request
parameters can be appended to the URL and can be accessed from the actions.
Controller can load a model class to interact with the database. By default, CakePHP
fi nds out the related model class from the controller name. We can though override
the default and tell the controller to load other model classes using the $uses
attribute. Every controller action usually renders a view fi le to send formatted
response to the browser. CakePHP has some conventions for saving and naming
view fi les so that they can be loaded and rendered automatically. We can though
skip the view rendering by setting controller attribute $autorender to false.
Controller method set() is very commonly used to pass data to the relevant
view fi le. Redirection is an established method to forward a user from one action
to another and in CakePHP it is done using the method redirect(). In Cake, all
controllers are subclasses of the AppController class. Methods defi ned inside the
AppController class that can be called from different controllers. In CakePHP
applications, common controller functionalities are written inside components to
increase reusability.

Well, that's the end of the controller story. Now, get prepared for the next chapter
which is about CakePHP models. We will learn lots of cool stuffs there!

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

